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SUMMARY 
An approximate (linearized) Riemann solver is presented for the solution of the Euler equations of gas 
dynamics in one spatial co-ordinate. This includes cylindrically and spherically symmetric geometries and 
also applies to narrow ducts with area variation. The method is Roe’s flux difference splitting with a technique 
for dealing with source terms. The results of two problems, a spherically divergent infinite shock and a 
converging cylindrical shock, are presented. The numerical results compare favourably with those of Noh’s 
recent survey and also with those of Ben-Artzi and Falcovitz using a more complicated Riemann solver. 
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1. INTRODUCTION 

Recently, much success has been enjoyed by numerical schemes for hyperbolic conservation laws 
that update the solution by appealing to the information obtained by solving local Riemann 
problems at the interface between computational cells. It is possible in this way to obtain very 
accurate solutions for inviscid compressible flow in a straight pipe. In that case, the Riemann 
problems to be solved are ‘classical’; they are governed by the homogeneous (source-free) Euler 
equations and the data is piecewise constant. To generalize the technique (in the first place to non- 
homogeneous flows), one possibility is to construct and solve ‘generalized Riemann problems’ 
governed by the non-homogeneous equations and possibly having non-constant data either side of 
the initial discontinuity. Such generalized Riemann problems are obtained with considerable 
analytical effort and add complexity and expense to the calculations. It is therefore of interest to 
know whether such generalized Riemann problems are an essential contribution towards the 
creation of more general codes or whether the required information is obtainable from solutions to 
the classical problem. 

For homogeneous equations, the classical problem can provide all the information needed to 
obtain second-order accuracy (see References 1 and 2). In the present paper we derive a scheme 
which solves to second-order accuracy a class of non-homogeneous equations including the Euler 
equations with cylindrical or spherical symmetry or with source terms arising from variation of 
area along a narrow duct. However, the only Riemann problems solved are classical. 

In $ 2  we review the equations for the flow of an inviscid perfect gas in a general orthogonal 
curvilinear co-ordinate system. This is done in order to make clear the origin of the non-Cartesian 
terms in the subsequent equations. In $3 we describe the details of the flux difference splitting 
scheme for the approximate solution of the equations given in $2, in the case of an ideal gas whose 
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flow can be described by one curvilinear space co-ordinate only. In $4 we discuss the properties of 
the scheme given in $3, while in $5 we describe two specific test problems that can be used to test 
such schemes. Finally in $6 we display the numerical results achieved for these two problems and 
compare them with solutions obtained by existing algorithms. 

2. EQUATIONS OF FLOW 

In this section we consider the Euler equations for modelling the time-dependent flow of an 
inviscid, compressible fluid that may be described by one of the co-ordinates in a general 
orthogonal curvilinear co-ordinate system (xl, x2, x3). 

2.1 

We first state the system of differential equations describing the motion of an ideal gas in the form 

p, + div (pu) = 0, (1) 

(pu), + div (puu) = - grad p ,  

e, + div [u(e + p ) ]  = 0 

together with 

where p = p(x, t), u = u(x, t )  = [u,(x, t), u,(x, t), u3(x ,  t)lT and e = e(x, t )  represent the density, 
velocity in the three co-ordinate directions and the total energy, respectively, at a general position 
in space x = ( x t  , x2, x3)T and at  time t. The ratio of specific heat capacities of the fluid is represented 

We notice the emergence of a ‘non-divergence’ term in equation 2-namely, grad p-which 
takes this particular form because the stress tensor is diagonal. Now for a general orthogonal 
curvilinear co-ordinate system I grad1 and div are generally different (although they are identical for 
one-dimensional Cartesian geometry). Thus care has to be taken when we are working in a co- 
ordinate system other than Cartesian-e.g., spherical polars-since equations (1)-(3) do not 
appear in the standard conservation form for the application of conservative finite difference 
techniques. 

by Y. 

2.2 

If we now consider flow that is wholly dependent on one of the co-ordinate directions, say xl, 
then equations (1)-(4) become 
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together with 

where h,, h,, h3 are given as usual by the line element ds with 

ds=h ,dx , f ,  + h , d x , f , + h 3 d ~ 3 f 3 .  

Here rii is the unit vector parallel to the co-ordinate lines with xi increasing, p = p(x,, t), 
u = [u(x,, t), 0, O]’, p = p(x,, t) and e = e(xl, t). Equations (5)-(8) cannot now, however, be written 
directly in the standard conservation form 

wt + Cf(w)lx, = 0, 

(hlh2h3p)t + (hzh3pu)Xi = O, 

(9) 
with w = ( ~ , p u , e ) ~  and f a  suitable vector-valued flux function. They can, however, be put in the 
form 

(10) 

(h,h,h,e), + Ch,h3u(e + P ) l X I  = 0. 
In particular, in the case h ,  = 1, these equations can be written 

(h lhZh3p) t  +(hlh2h3pu)xi =’, 

and it is these equations we now study together with 

Equations (13)-(16) are nearer to a ‘conservation’ like form but with an additional ‘source’-like 
term on the right-hand side. 

Now in a general orthogonal curvilinear co-ordinate system, dV = h ,  hZh3 dx, dx, dx3 and thus 
equations (lo)-( 12) could also have been derived from the integral form of equations (1)-(3), where 
a quantity such as h,  hzh3p dx, dx, dx3 represents the mass in a control volume bounded by 
surfaces h ,  = constant, h, = constant and h3 = constant. 

2.3 

An example of a flow described by the above equations when h,  = 1 and the flow is wholly 
dependent on x1 is that of an inviscid, compressible fluid through a duct of smoothly varying cross- 
section, often referred to as ‘duct flow’. In that case we have 

[s(r)~It + IIS(r)~ulr = O ,  (17) 
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together with 

where we write x1 = r for notational simplicity and S(r)  represents the cross-section of the duct at 
r, and S(r)  = h1h2h3. 

More importantly, equations (17)-(20) cover all one-dimensional flows, including, for example, 
cylindrical and spherical flows with axial or radial symmetry. They also reduce to the correct form 
in the case S E 1 (slab symmetry). 

Equations (17)-(19) can be written as the system 

W)WZ + CS(r)f(w)l, = g w ,  (21) 

(22) 

where 

w = (t) , f(w) = [ p ! i u 2  and g(w) = [ p i ( r ) ]  . 
u(e + P )  

We notice that S(r)f(w) = f[S(r)w] = F(W) and S(r)w, = [S(r)w],, so that equations (21) and (22) 
can be rewritten immediately in the more familiar form 

w, + CF(W)l, = g(w), (23) 

where W = S(r)w. This gives rise to new ‘conserved’ variables 9, M and E,  where 9 = S ( r ) p ,  
M 5 S(r)m and E = S(r)e .  (Here m denotes the momentum pa.)  It also gives a new ‘pressure’ 
variable P = S(r )p .  Quantities with the dimension of velocity are unaltered; e.g., the velocity u = U ,  
sound speed a = J ( y p / p )  = J ( y P / a )  and enthalpy h = (e + p ) / p  = ( E  + P ) / B  = H .  In particular, 
the matrix A = aF(W)/aW involves only velocities and is the same as df(w)/aw. 

Using these new variables, the Euler equations for duct flow become 

Equations (24) and (25) represent a system of hyperbolic ‘conservation’ laws similar to 
equations (21) for slab symmetry-i.e., when S = 1 and g = 0- with an additional source term on 
the right-hand side. This additional term is due to the difference between the divergence and 
1 gradient1 operators in a non-Cartesian co-ordinate system in one dimension. The extra pressure 
term is due to the non-parallel nature of the sides of a control volume in the duct; i.e., on the non- 
cancelling of pressure terms on either side of the duct. 

In the next section we describe a finite difference approximation for equations (24) and (25) using 
the linearized Riemann solver of Roc3 

3. FLUX DIFFERENCE SPLITTING 

In this section we consider a finite difference approximation for the solution of equations 
(24) and (25). 
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3.1 

In the case of slab symmetry, S = 1, equations (24) and (25) reduce to the one-dimensional Euler 
equations in a single Cartesian co-ordinate, which can be solved by flux difference splitting using 
the approximate Riemann solver developed by Roe.3 Roe's approximate Riemann solver, 
combined with the 'Superbee' limiter has been used very successfully to give a second-order method 
for the Euler equations in one dimension (see References 1 and 4-7). It is found that the first-order 
part of the method captures shocks crisply over a single cell and the second-order part gives good 
accuracy in smooth regions, while the use of specific limiters gives sharp contact discontinuities 
(see References 1 and 5). The scheme is also conservative. 

We shall use the similarity of equations (24) and (25) to the Cartesian case to develop a 
corresponding method for duct flows, keeping as far as possible the above valuable properties. 

3.2 

We consider a fixed grid in space and time, with grid sizes Ar and At respectively, and label the 
points so that r j  = rj,- + Ar, t, = t , -  + At and Wj. and wj. denote the approximations to W(rj, t,) 
and w(rj ,  t,) respectively. 

Using the relationship W(rj, t,) = S(r j )w(r j ,  t,), we may write 
A 

(26) W? == S.w? 

where gj  represents an average value of S(r). Assuming that at any time't, = n At, W; represents a 
piecewise constant approximation to W(rj, t,) in the interval ( r j  - Ar/2, r j  + Ar/2) (as in the usual 
Godunov approach), ij is given by the volume integral 

J J J '  

S(r )  dr. (27) S . = -  d r  Sl;::: 
(N.B. J ~ ~ ~ ~ ~ ~ ~ S ( r ) d r  is the volume of an elemental control volume in the duct.) This enables us to 
project our initial data w(r, 0) onto a set of piecewise constant states Wg approximating W(r, 0), 
march forward in time and obtain an approximate solution 

A 

WJ = WJ/Sj (28) 
for w(rj, t,) at time t = t , .  

respectively. We now rewrite equation (23) as 
Consider the interval [ r j -  r j ]  and denote by W, and WR the approximations to W at r j -  and r j  

and solve approximately the associated Riemann problem 

wi f wR)wr = g(w) (29) 
with data W, and W, either side of the point r j - 1 , 2 ,  linearising by taking a(W,, W,) to be a 
constant matrix. We shall use a finite difference form of equation (29), 

where &(WL, W,) is the Roe matrix (31), g is an approximation to g and P may be L or R. The Roe 
matrix x(W,, W,) is an approximation to the Jacobian A = aF(w)/aW and because of the 
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remarks following equation (23) it can be seen that 

where d(w,,w,) is an approximation to af(w)/aw. This matrix is constructed so that 
fR - fL = d(w,,  w,)(w, - wL) for any finite change of state and is given3 by 

I- 1 
0 I 1 O I  

~ - 3 6 ,  
A =  - I  7- 

where 7 denotes a square root mean of left and right states of Y; namely, 

for all variables other than 9 and p. In later analysis we shall need mean values for W and p, given 
by 

= J(9LaR)? b = J(PLPR) .  (33) 

The eigenvalues of are 
* *  I -  I, = 6 + d,  A, = u - d, A3 = u, 

with corresponding eigenvectors 

(34) 

(as in the standard Cartesian case when S = l), where fi is calculated using equation (32) and the 
mean sound speed G is calculated from 

d2=(y- 1)(&+62). (36) 
(N.B. since \(GI tC2 , i53 ) /  = 2ii3/(y ; l), the eigenvectors are linearly independent if and only if zi # 0.) 

Using the above properties of A, we can write equation (30) in such a way that the left-hand side 
has its natural conservation form, i.e., 

where %(w") is a suitable approximation to the term g(w) on the right-hand side of equation (29). 
We thus obtain 

W"pl - W: = At%(w") - (At/Ar)(Fj - Fj- l). (38) 
Before we describe the mechanism used to update W: to W;+ ', we look at the approximation g(w") 
used for g(w). 

Now, g(w) = (0, S'(r)P/S(r), O)T and we need only to approximate the second component. For this 
middle component g2(w) we notice first that, since the sound speed u is given by u2 = yp/p = yP/W, 



FLUX DIFFERENCE SPLITTING 103 

we may write 

Pa2 S'(r) S'(r) g a 2  
g2(w) = -P = -- 

S(r)  S(r) Y Y 
= S'(r)-. 

The reason for doing this is that g2(w) now has a more 'natural' approximation in the framework 
we have set up in the sense that ŝ  is averaged in the same may as 9; i.e., 

where a"' is as before and 

In the homogeneous case, the procedure now3 is to project Af = f, - fj- onto the eigenvectors of 
d. Each projection represents the contribution of one wave system to Af. Here we follow a 
suggestion of RoeS and find the projections both of Af = F, - Fj- and also g(w"). Roe shows that 
for linear conservation laws this procedure leads to a correctly 'upwinded' treatment of source 
terms. We then update Wj" to Wj"' as follows. Suppose that we can find wave speeds xi and wave 
strengths Ei such that 

3 

i =  1 
A,W = Wj- Wj- = 1 8,2, 

and 
3 

A,F= 1 ZiIiZi. 
i =  1 

Since A has eigenvalues xi with corresponding eigenvectors G,, and we may also expand the source 
term g(w") in terms of the 2, as, say, 

1 3 -  
Ar i Z l  

g(w") = -- c f l i G , ,  

we may write equations (37) as 

At - 
Ar i = l  

wn,++l = wn, - - 1 Ai.yiCi, 

- -  where 
.yi = Ei + fl  ,/Ai 

and P may be L or R depending on the sign of xi. 
If we follow the algebra through, we obtain for the a", in (40) and (41) 

1 A r P  
22 2a z2 

1 I 

E l  =- (ArP + aiiA,U), a", = -;Z(A,P - 8 6 A r U ) ,  8, = A r 9  - ~ 

and for the in (42) 

(43) 

(44) 

(454 

&A$ (y - 1 ) 8  6 A,$ . (45b) YS 81 =- [(y - 1)6 + a " ] ,  8, = - 

(Note that the quantity A,s//s"is independent of time and therefore has to be calculated only once. If 
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the area changes are due to central symmetry, so that S ( r )  = kr', w4ere o = 1,2 for cylindrical or 
spherical flow, then i 

and 

Since these expressions are singular when a grid point is placed at the origin, we use grids that 
straddle the origin.) 

The expressions in equations (45a, b) have been written in terms of primitive variables for 
simplicity. The expressions for El ,  E2 and 8, follow those given by Roe and Pike4 and signify wave 
strengths which would be generated by the data [Wj-  1, W j ]  in a parallel duct. The expressions for 
pl, p2 and p3 represent modifications to those wave strengths due to area changes. The following 
identities are useful in deriving equations (45a, b): 

Ar(BU) = 5 Ar U + 6 ArB, Ar(BU2) = 6 ' A r B  + 2 2  6 Ar U .  

We also note another identity, namely, 

which ensures that ci2 is non-negative for real data. Moreover, it gives conditions for the local 
sound speed to vanish; namely, P, = P,  = 0, Ar U = 0; i.e., p L  = pR = 0, uL-= uR. This corresponds 
to special data for which both the wave speeds 6 and eigenvectors (1,6,3U2))' are equal, so that in 
this case the scheme reduces to 

representing an advancement of W; entirely due to changes in the density profile. Although 
computationally this case would appear to be difficult to handle, we notice that, when E = 0, by 
changing ii2 to a non-zero value the scheme reproduces equations (47). (The non-Cartesian 
geometry is still present since W = S(r)w.) 

To solve equations (24) and (25) using the finite difference approximation given by equations (43) 
and (44), we use the method of upwind differencing on the three waves with wave speeds I,, & and 
I3 and wave strengths PI, y2, 7, (which will differ from the usual wave strengths in slab symmetry 
due to the variation of S(r)) .  

To update W" to W"", we use first-order upwind differencing; i.e., for each cell [ r j -  1 ,  r j ]  we add 
- (Aq'Ar)xiyiEi to WJ when xi > 0 and add - (At/Ar)xiyiEi to W;- when xi < O(see Figure 1). This 
gives a first-order approximation and exact shock recognition for the Riemman problem given by 
equation (29) within the resolution of the grid, provided that we use the previously defined local 
averages given by equations (32) and (33) (see Reference 3). 

We can now calculate second-order corrections by transferring fractions of the increments 
described in Figure 1. If we 'limit' these transfers using a suitable flux limiter or B function (see 
References 1,4 and 5), the scalar scheme will be second-order almost everywhere, oscillation-free 
and will sharpen up certain features that will be smeared by using the first-order method only. In 
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n + l  

Figure 1. Schematic representation of the first-order algorithm 

addition, a device may be incorporated into the scheme to disperse entropy-violating solutions and 
treat expansion fans correctly (see Reference 9). 

In the next section we note the properties of the scheme described above in relation to the type of 
problem we wish to solve. 

4. PROPERTIES OF THE SCHEME 

In this section we discuss briefly some properties of the scheme proposed here for solving 
equations (17)-(20) in relation to the features that we expect to occur in this type of problem. 

(i) The scheme is ‘conservative’ in the following sense. Equations (17) and (19) represent 
conservation of mass, f p S ( r )  dr, and energy, f eS(r) dr, but conservation of momentum, J puS(r) dr, 
is not maintained in equation (18). This is because the pressure term arises as S(r)p, which is not 
derivable from a potential. However, [ S ( r ) p ] ,  is derivable from a potential, but leads to a non-zero 
right-hand side term S’ ( r )p  (since in the non-Cartesian case S $ 1). Thus integrating equation (23) 
gives 

Therefore, in the region 0 < r d 1, 

Thus the first and last components of W are conserved and, if S’(r )  E 0, so is the middle component. 
We now show that the scheme given by equations (43) and (44) is also ‘conservative’ in a finite 

difference sense. Since by construction xA,W = A,F, we have 
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where N Ar = 1. Thus the finite difference scheme is again 'conservative', in the sense that the first 
and last components of W" are conserved, and the second component will be conserved if S'(r) = 0; 
i.e., A,S = 0; i.e., &(w") = 0. 

(ii) If we consider the special case of constant data pj" = p", uj" = u", pj" = p" for all j at time t = n At, 
equations (43) and (44) reduce to 

A 

giving a direct finite difference analogue of equations (21) and (22) with u, = 0 (corresponding to 
Aru = 0). Equations (52) have the solution 

pj"+"p"( 1 - Atu"ArS ArS" *) 
(534 

for k 2 0, which are approximate solutions to the exact solutions of equations (21) and (22) with 
this given data; namely, 

, (544 A,., (n + k )  At) = p"e-kA'""[s'(r)/S(r)l 

In particular, with U" = 0 (no flow) and constant density and pressure, p" and p" respectively, 
equations (53a-c) yield the correct physical solution; namely, u " + ~  = 0, pn+k = p", p"+k = p". 

(iii) The scheme 'recognizes' steady states. If the data satisfies the compact residual equation 

F, - Fj- = Arg"(w),_ 1,2 for all j ,  ( 5 5 )  - 
then n", = I2 = L3 = 0 for all pairs of cells and no updating takes place. Equation (55 )  can be 
regarded as a two-point discretization, second-order accurate at r j -  l,z of the ordinary differential 
equations governing steady compressible flow. This property appears especially valuable when 
shock reflection should leave behind a uniform unchanging flow, as in Problem 1 in $5. 

(iv) The scheme also 'recognizes' shock waves. At a shock, A r F  = s A,W for some scalar shock 
speed sand, by equations (40) and (41), s is an eigenvalue of d The projection of ArW onto the local 
eigenvectors of x will be solely onto the eigenvector which corresponds to s. In this special case, the 
solution of the linearized Riemann problem given by equation (40) is exact (see Reference 3 and 
below). 
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The reason that the formulation (40) recognizes shocks is that the right-hand side term g(w) does 
not contribute to the shock wave, essentially because it does not contain any derivatives in w, and 
therefore no jumps. In particular, suppose that the pressure p jumps from p L  to pR at r = r,; then 

lim [ S'(r)pdr = lim {pLIS(ro) - S ( r ,  - E ) ]  + pRCS(rO + E )  - S ( r o ) ] }  = 0, 
r o + &  

&+O ro-E &+O 

since S ( r )  is continuous. Thus 
f r o + &  

lim J g(w)dr = 0; 
ro-e 

i.e., the shock speed is given by Ar F(W)/ArW, with the right-hand side making no contribution. 
Moreover, in terms of the three scalar problems obtained by diagonalizing the system given by 

equation (30) with A a constant matrix, we have 

avi avi 
at ar -+&-=hhi(w), i =  1,2,3, (57) 

where 
v = X-'W, h = X-'g 

and X is the modal matrix consisting of the eigenvectors of A with eigenvalues ,Ib Solutions to 
equation(57) can be represented in terms of a 'shock solution', this being a solution of the 
homogeneous equation-i.e., equation (57) with h(w) = 0-and a 'source solution', this being the 
particular solution of the inhomogeneous equation (57). In effect, the scheme we have developed 
solves equation (57) approximately, and thus the important 'shock solution' is modelled as a 
consequence of the construction of x. 

In the next section we discuss two test problems that can be used to test algorithms for solving 
equations (17)-(20). 

5. TEST PROBLEMS 

In this section we look at two test problems used to test the previously described algorithm for 
solving equations (17)-(20). 

Problem 1 

The first problem, proposed by Noh," is concerned with infinite shock reflection and can be 

We consider a region 0 d r d 1 with initial conditions 
posed in slab, cylindrical or spherical symmetry, denoted by d = 1,2 or 3 respectively. 

p(r, 0) = 1, u(r, 0) = - 1, p(r, 0) = 0; 

i.e., low-energy gas (zero temperature) moving towards r = 0. This represents shock reflection from 
a rigid wall (d = l), an axis of symmetry (d = 2) or the centre of a sphere (d = 3), all at r = 0. The gas is 
brought to rest at r = 0, and denoting (0) initial values, ( - ) pre-shocked values and ( + ) post- 
shocked values, we have the exact solution (see Reference 10) 

y + l  d - '  Y + 1  
p o = l ,  p+) Y - 1  P O ,  P +  = (-)-, Y-1 
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i 

LL+= 0 

(L u-= ur  I 

Figure 2. The exact solution of Problem 1 with d = 3, y = 5/3 at t = 0.6 

and 

The shock moves out from the origin with speed (y - 1)/2. (N.B. p ' / p -  = co.) 

solution at t = 0.6 is shown in Figure 2. 

compute. However, the cases d = 2 and d = 3 are much more difficult to model (see Noh"). 

various values of y. (N.B. Here S ( r )  = r2.) 

Taking the spherical case as an example, with d = 3 and y = 5/3 (a monoatomic gas), the exact 

The case d = 1 is a standard test problem in shock reflection and the solution is not difficult to 

It is the last case, d = 3, that we concentrate on here; i.e., a spherically infinite diverging shock, for 

Problem 2 

The second test problem is concerned with a converging cylindrical shock. Here we consider a 
region 0 6 r 6 200 for the cylindrically symmetric case given by equations (17)-(20) with S(r)  = r. 

Initially, a cylindrical diaphragm of radius r = 100 separates two uniform regions of an ideal gas 
at rest (y = 1.4, a diatomic gas; e.g., air). The initial conditions are p = p = 4 in the outer region and 
p = p = 1 in the inner region. When the diaphragm is removed at t = 0, a converging shock wave 
followed by a converging contact discontinuity move towards the axis, r = 0, and a diverging 
rarefaction wave moves outwards. 
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The shock accelerates as it approaches the axis of symmetry, is reflected from the axis and 
interacts with the contact discontinuity (still converging), which results in a transmitted shock, a 
converging contact discontinuity and a weak converging reflected shock. This problem has been 
treated by Ben-Artzi and Falcovitzll using a more complicated Riemman solver. In the next 
section we display numerical results for the two problems described above. 

6. NUMERICAL RESULTS 

In this section we exhibit numerical results obtained for the two test problems described in $5 using 
the scheme described in $3.  In both cases we apply a reflection condition at r = 0; i.e., we add an 
‘image’ cell at the boundary Y = 0 and impose equal density and pressure, and equal and opposite 
velocity, at either end of the cell. This results in no net movement in the cell. Two ‘image’ cells are 
required for the second-order method. 

Problem 1 

Figures 3-5 refer to Problem 1 using either the first-order scheme or the second-order scheme 
with the Superbee limiter (see References 1 and 5). We vary the output times, but the number of 
mesh points remains fixed at 100. 

We note that, because the incoming flow at r = 1 is supersonic, we have imposed the exact 
solution there: however, this condition can easily be replaced by introducing a low-energy gas at 
the right-hand end. 

Problem 2 

Figures 6-1 1 refer to Problem 2 using the second-order scheme with the Superbee limiter. We 
have used y = 1.4 and 200 mesh points. 

For Problem 1 we note the extremely good representation of the solution and propagation of the 
shock in time. Although it is a simple test problem, it has been found difficult to achieve good 
results (see Noh1’). Since the only feature in the solution is a shock discontinuity, the first-order 
method works well, with a slight lack of resolution in the smooth part of the flow. 

For Problem 2 we have found that the first-order method is not as accurate since the solution has 
a number of features that require good resolution. However, the second-order scheme applied with 
the Superbee limiter compares well with the solutions computed by Ben-Artzi and Falcovitz,’ ’ 
especially in the weak converging shock present at t = 110. 

For both problems we see that the discontinuities move with the correct speed. This feature is a 
consequence of writing the equations in ‘conservation’ form and of using the Roe averaging for the 
new variables. The use of flux limiters sharpens up these features without introducing non-physical 
oscillations. Furthermore, upwinding the source terms after projecting them onto the local 
eigenvectors leads to the correct treatment of the linearized equations (see Reference 8). 

The CPU time required to compute the results on an Amdahl V/7A was found to be as follows: 

(i) Problem 1 with Superbee and 100 mesh points takes 0.0157 CPU seconds to compute one 
time step and a total of 1.256 CPU seconds to reach a real time of 0.6 using 80 time steps. 

(ii) Problem 2 with Superbee and 200 mesh points takes 004 CPU seconds to compute one time 
step and a total of 8.64 CPU seconds to reach a real time of 54 using 216 time steps. The 
reason for the amount of CPU time used per time step per mesh point being higher in 
Problem 2 is that we needed to include the entropy modification mentioned in $3.  
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A minor modification to our algorithm allows for a variable (adaptive) time step and gives the 
ability to decrease the total amount of computing time used. 

7. CONCLUSlONS 

We have extended the one-dimensional version of Roe’s scheme to include cylindrically and 
spherically symmetric problems. We have shown how these problems break away from standard 
‘conservation’ form and thus give rise to source terms, and that with the approach outlined in $3 we 
can achieve good results on standard test problems. In particular, by writing the equations in a 
special form, using the Roc averaging, and upwinding the projected source terms, we obtain the 
correct speed for shock and contact discontinuities. Moreover, the algorithm is computationally 
efficient. 
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